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Abstract

In reinforcement learning (RL) tasks, the agents have to explore their environments
to find an optimal policy that maximizes the long-term discounted return based on a
designated value function. However, in some real-world situations where the safety
of the agent is particularly crucial, (e.g. expensive robot arms; implementation of
RL in autonomous driving), safe exploration becomes paramount during the training
and testing processes in the real world. In this work, we make three noteworthy
contributions to advance the study of safe exploration. First, we introduce two sets
of metrics to evaluate safe RL algorithms’ performance in the training and testing
phases, respectively, which complementarily enhance each other and reveal some
details that cannot be caught by either phase individually. Second, in the testing
phase, the vast majority of the published results of safe RL benchmarks are usually
expressed in terms of point estimates of aggregate performances such as mean and
median scores across different tasks, which ignores the statistical uncertainty raised
by the limited number of training runs. Given the current status quo, we are the first
to include statistical uncertainty in the safe RL algorithm’s testing-phase evaluation
to avoid discrepancies between the point estimates and the true distributions of
data. Last but not least, to enhance the diversity of the evaluated algorithms, we
extend our benchmark from model-free to model-based safe RL algorithms, and
make some improvements on the algorithms for comparison.

1 Introduction

In safety-constrained problems, a "bad", namely an unsafe policy might cause severe damage to the
agent. Therefore, RL algorithms have rarely been implemented under these situations and researchers
are paying more attention to Safe RL algorithms. Safe RL can be defined as a process of learning
to find optimal policies lowering the probability of "bad" policies that might cause unacceptable
damage while maximizing the expectation of the accumulated return during the training and testing
processes.[1]. To our understanding, Safe RL has a promising prospect in some safety-critical
industries that have been developing prosperously. And this has aroused our interest to explore the
field of Safe RL.

In the training process, the performance of a safe RL algorithm can be revealed by the change of
costs and rewards across learning steps during training trials. In the paper by the team of Safety
Gym[2]], several baselines constrained RL algorithms on Safety Gym environments (PPO-Lagrangian,
TRPO-Lagrangian, etc.) have been evaluated using some well-designed environment sets and metrics.
However, the evaluation methodology presented in this paper is not sufficient to thoroughly compare
the performance of all state-of-the-art constrained RL methods. The metrics and test environments
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could be less helpful in evaluating performance in terms of some important factors, for example, the
steadiness in training runs.

In the testing process, the algorithm is predominantly evaluated by comparing its final costs and
rewards across different tasks. Most of the safe RL benchmarks use point estimates, namely the mean
and median of costs and rewards for runs in different tasks, which ignores the statistical uncertainty
in results.

Thus, we design two sets of metrics for both the training and testing phases to avoid the afore-
mentioned cons of the existing benchmarks. To improve the diversity and test our benchmark
comprehensively, we adopt some improvements on the algorithms we are evaluating. For model-free
algorithms, we implement PID-controlled Lagrangian methods [3]] for comparison in terms of training
stability. For the model-based RL, we improve its performance by re-weighting safe data and unsafe
data.

2 Related Work

Benchmarking RL and RL Safety: Various benchmark environments have been proposed to
measure progress on different RL problems. Bellemare et al. [4] proposed the Arcade Learning
Environment (ALE). Brockman et al. [3]] proposed OpenAl Gym, an interface to a wide variety of
standard tasks. Tassa et al. [6] proposed the Deepmind Control Suite, a set of high-dimensional
physics simulation-based tasks. Ray et al. [2] proposed OpenAl SafetyGym, tools for accelerating
safe exploration research.

RL Evaluation: Efron [7] proposed bootstrap method in distribution estimation. Colas [8] et al.
believe that evaluating more runs per task is necessary to reduce uncertainty and obtain reliable esti-
mates. Agarwal et al. [9] used statistical tools to account for uncertainty and scrutinize performance
evaluations of existing algorithms.

Safe RL Algorithms: There are different kinds of safe RL algorithms. Recently, several constrained
model-free RL algorithms have attracted much attention. Ray et al. [2] used Lagrangian approach
for constrained optimization. Stooke et al. [10] proposed PID controlled Lagrangian method, which
achieves favorable learning dynamics through damping and predictive measures. As for model-
based safe RL, Liu et al. [[11]] used model predictive control (MPC) as the basic control framework
and proposed a robust cross-entropy (RCE) method that takes into account model uncertainty and
constraints to optimize the control sequence, and achieves better constraint satisfaction than baseline
safe RL methods.

3 Methods/Algorithms

3.1 Training Evaluation Metrics

To evaluate an algorithm’s safety performance, we adopt the metrics proposed by the OpenAl Safety
Gym team and measure the following throughout training:

* The averaged return in each episode J,-(6).
* The averaged sum of costs in each episode, J..(6).

* The sum of all costs divided by the total number of environment interaction steps, p..
Namely the cost rate.

According to Safety Gym[2], it complies with our intuition that the cost rate does not indicate
the stability of the cost curve. For instance, a steady training run could have a similar cost rate
compared to a run with high-amplitude oscillations in cost signal as long as the costs in both cases
oscillate around a specific average. To better evaluate the performance of the constrained RL methods
especially in terms of stability, we introduce a new metric, the standard deviation of the episodic
costs, to account for the steadiness of the cost curve.

* The standard deviation of episodic costs, o, This quantity describes the stability of the
training process and we aim to keep it small and steady.



3.2 Testing Evaluation Metrics

Point estimates are widely used to evaluate the performance of RL algorithms. However, the
uncertainty in results is not negligible. There’s a substantial discrepancy between point estimates and
the sampling distribution.

- . v
o [ — c
. | Reported 5
Y | mmm DER -
3.0% 1 \ A
2 y 11 I 1 OTR ——
2 I A\l CURL u
5 i \ DrQ S —
5 : I\ mmm DrQ(e) S .
S )
©1.5% iy SPR o i
o Nl =
= Billh 2 ——
] —
| N\ =™
| y ¢ ! . = =
0.0% ol : G 0.1 0.2 03 04
(a) Distribution of normalized scores (b) 95% Confidence Interval

Figure 1: [9] Left. Distribution of median normalized scores computed using 100,000 different
sets of N runs subsampled uniformly with replacement from 100 runs. Right. 95% CIs for the IQM
scores for varying N.

As shown in Figure[Ta] for a given algorithm, the sampling distribution indicates that the median
scores estimated using different sets of runs vary across different experiments. However, published
point estimates of median scores (shown as dashed lines) fail to show the variability in median
scores and fall quite far away from the expected median. Thus, we use two novel metrics, Stratified
Bootstrap Confidence Interval [12] (Figure[d) and the Performance Profile (Figure 3) to account
for the uncertainty and variability in the test results.

3.2.1 Stratified Bootstrap Confidence Interval
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Figure 2: Stratified Bootstrap

Unlike a point estimate which directly approximates the algorithm’s aggregate performance, namely
the true score, a confidence interval (CI) indicates the range where the true score possibly lies. Given
the status quo where we deal with a small sample size, a bootstrap confidence interval seems to be
more reasonable than using sample standard deviations to find the CI. The Bootstrapping approach



approximates sampling from the true distribution by random resampling with replacement. Thus
we can approximate the confidence interval by resampling a data-set with a small sample size for a
given task. Furthermore, instead of standard bootstrapping by re-sampling N runs with replacement
independently for a single task, we can aggregate across tasks and create a stratified bootstrap
sampling set with M(tasks) times N(runs) data points (as shown in Figure[2). Then we calculate the
interquartile mean(IQM) of the sampling set. After repeating this process over 1000 times, we get a
fair approximation of the sampling distribution. By sorting out the resulting statistics and cutting off
the first and last 2.5 %, we acquire the 95 % Confidence Interval, as shown in Figure According
to Agarwal, B et al. , percentile CIs provide good interval estimates for as few as N = 10 runs for
1QM scores.

3.2.2 Performance Profile

For a safe RL algorithm, the performance may vary widely across different tasks and may be outlier-
prone. Under this context, an algorithm’s performance cannot be fully captured by either point
estimates or interval estimates. In comparison to mean and standard deviation, performance profiles
provide a much clearer indication of the degree of performance variability across tasks by visibly
representing the score distribution for each element in the sampling set (Figure[3)), which shows the
fraction of runs whose normalized scores are above a certain threshold (7) and is given by:
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where x,,, ,, is the score of run n in task m, M the number of task s and N the number of runs for each
task.
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Figure 3: Performance Profile

3.3 Baseline Model-free Methods

The base method (PPO) is a classical RL algorithm without any constraints. In constrained optimiza-
tion, the errors of gradient and Hessian matrix estimation may lead to poor performance on constraint
satisfaction. Lagrangian methods are a classical approach to solving constrained optimization prob-
lems, usually multiplying the constraint term (cost function) g(x) by a Lagrangian multiplier \ added
to the original objective function. Generally, the objective function of Lagrangian methods is:

L(z,A) = f(x) + Ag(x) 2
In this way, the Lagrangian approach incorporates the constraints into the objective function with a
Lagrange multiplier, and it can be optimized with policy parameters using gradient descent, which
avoids constrained optimization. One problem with the Lagrangian method is that during training,
constraints are often violated. Violation of the constraint leads to fluctuations in cost function value,
which leads to fluctuations in Lagrange multiplier . This is typical caused by integral control[3]].
Following this perspective, we also adapt the PID Lagrangian method to update the Lagrange
multiplier A in a dynamic way based on the PID.



In summary, for model-free methods, we reproduce and benchmark PPO, PPO-Lagrangian, TRPO-
Lagrangian, and PPO-PID-Lagrangian.

3.4 Model-based Method

To give our metrics a more comprehensive evaluation of safe RL, we introduce an improved Model-
based safe RL Algorithm. Here, we use two multilayer perceptrons (MLP) to learn the dynamics
of the input data and the cost model and obtain a higher accuracy for the dynamics model and cost
model. Then, following the approach used in [11]], we use model predictive control (MPC) as the
basic control framework for our model-based approach, and the goal of MPC is to maximize the
cumulative reward over a sequence of actions.

Besides, based on our Model-free training results, we found that after the RL algorithm learned some
policies, the unsafe data that violates the safety constraint represent only a small fraction during
training. However, the unsafe data is valuable for improving the performance of the RL policy. The
algorithms usually get bottlenecked, which means that the effectiveness of the algorithms is difficult
to improve at a later stage. Therefore, we want to use a sampling strategy to improve the performance
of the RL algorithm by reweighing the distribution of unsafe and safe data. The resampling rule is to
sample the unsafe data repeatedly. Instead of selecting each example from the training set with equal
probability, we resample more difficult samples. Then, we retrain our two MLPs on our resampled
data.

4 Experiments/Results/Discussion

4.1 Training Evaluation

We use normalized metrics to compare the performance across different environments:

no =" a0 =" ) ="
T c c (3)
NL(0) = max(0, J.(0) — d) _ 10-6

max(e, J¥ — d)

where d is a hyperparameter, for example, the safe threshold, and J¥, J*. pk ¥ are selected character-
istic metrics, which were obtained from experimental data of the unconstrained PPO implementation,
for environment set k. In Figure [d] we show the learning curves from training the aforementioned RL
algorithms on a pre-defined Safety Gym environments. These learning curves show the un-normalized
metrics J,.(6), J.(6), p.(f) , and the penalty. In Table[I] we report averaged normalized metrics from
the end of training across different test environments.

Table 1: Averaged normalized metrics from the conclusion of training.

Return J,.(f) Violation M.(#) CostRate p.(§) STDEV 5.(6)
PPO 1.0 1.0 1.0 1.0
PPO-Lagrangian 0.732 0.441 0.443 0.891
TRPO-Lagrangian 0.587 0.108 0.258 0.367
PPO-PID-Lagrangian 0.598 0.142 0.312 0.632
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Figure 4: Results from unconstrained and constrained RL algorithms on a pre-defined environment.
We set cost-limit=25 for Lagrangian methods, and test three RL algorithms on PointGoall in safety

4.2 Testing Evaluation
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Figure 5: Left. Performance Profiles for 6 tasks and 6 runs for each task calculated with 7 = 2.
Right. Stratified Bootstrap 95% Confidence Interval with 1000 re-sampling trials.

From Figure #b] we can see that the cost of PID-Lagrangian fluctuates around the cost limit, while
there’s a more significant periodic fluctuation for the Lagrangian method, which indicates that the



PPO-PID-Lagrangian method better meets the safety requirement (basically near the cost limit). A
similar trend can be observed from Figure 4c| in which the cost rate of PPO-PID-Lagrangian drops
significantly quicker than other methods. This is because the PID controller tends to drag the cost
curve towards a given threshold. To evaluate this characteristic, as mentioned in section 3.1, we
introduced a new metric o, the standard deviation of episodic cost. As shown in Tablem because of
better penalty control, the PID-Lagrangian method has a smaller standard deviation compared to the
Lagrangian method, which, put another way, means that it is stabler and more preferable. At the same
time, the PID-Lagrangian method has a lower Violation, which indicates that this method provides
a much safer policy than the Lagrangian method as we expected. Overall, the TRPO-Lagrangian
outperforms all other algorithms with respect to safety concerns. However, it seems to perform the
worst in terms of return. But this is acceptable as we put more weight on the safety constraints.

In the testing phase evaluation, through performance profile and confidence interval, we have a more
comprehensive understanding of the performance of these methods. For example, we can see from
the tail of the performance profile that PPO-PID-Lagrangian and TRPO-Lagrangian perform the best
in the worst cases since they reach the x-axis faster, while TRPO-Lagrangian performs the best on
average cost indicated by the confidence interval. This complies with what we get during the training
phase, where the Violation for TRPO-Lagrangian and PPO-PID-Lagrangian are both at a low level
and the cost rate for TRPO-Lagrangian is the lowest among all.

4.3 Comprehensive Evaluation of Model-based and Model-free Method
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Figure 6: Cost return of model-based and model-free method

We compare the approach of our improved Model-based, the baseline Model-based approach and
the best-performing Model-free method, TRPO-Lagrangian. Compared with the baseline Model-
based approach, our improved model-based approach uses two MLPs to fit the cost function and the
dynamic model, which is able to learn them accurately and faster. As shown in Figure[6] our method
avoids unsafe behavior during exploration and achieves the lowest constraint violation. However,
the model-based model is more difficult to train and takes a longer time in the same training step
compared to the Model-free approach.

5 Conclusion

In this work, we make the following contributions:

* We design two sets of metrics to evaluate safe RL algorithms’ performance in both the
training and testing phases.



* We are the first to evaluate RL algotihms’ safety performance with statistical tools to avoid
discrepancies between the point estimates and the true distributions of data.

* We are the first to compare three different genres of safe RL algorithms, including Lagrangian
approach, PID Lagrangian approach, and model-based method.

* Our experiment reveals that TRPO Lagrangian and PPO Lagrangian have better worst-case
performances than other baseline methods, which is not reported in [2].

* We apply reweighing methods on model-based RL, making it able to learn the cost function
accurately and faster, greatly avoiding unsafe behavior during exploration, and achieving
the lowest constraint violation rate compared to all other methods.

The current safety gym only contains five different kinds of hazard objects, including dangerous areas
and fragile objects, etc, which we believe are not enough for a comprehensive safety evaluation. As
a result, we plan to add more diverse environments in safety gym in the future work. For example,
adversarial objects that have a certain level of intelligence.



6 Contributions

Lan focuses on code reproduction and comparison of Model-free methods, Junzhe focuses on new
metrics realization and performance analysis, and Lei focuses on Model-based testing. We hereby
acknowledge all contributions from each team member, the help from our assigned TA Armengol
Urpi Nuria, all other TAs, and the professor of introduction to Reinforcement Learning, Niao He,
without which we cannot reach this point and finish this project successfully. Every member of
this team thinks diligently and communicates efficiently and we are looking forward to the next
collaboration opportunity.

References

[1] Javier Garcia, Fern, and o Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(42):1437-1480, 2015. URL http://jmlr.org/
papers/vl16/garcialba.htmll

[2] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. arXiv preprint arXiv:1910.01708, 7, 2019.

[3] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by PID lagrangian methods. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 9133-9143. PMLR, 13-18 Jul 2020. URL https://proceedings,
mlr.press/v119/stooke20a.html.

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[6] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[7] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics,
pages 569-593. Springer, 1992.

[8] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical
power analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295,
2018.

[9] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[10] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pages 9133-9143.
PMLR, 2020.

[11] Baiming Chen Sicheng Zhong Martial Hebert Ding Zhao Zuxin Liu, Hongyi Zhou. Safe
model-based reinforcement learning with robust cross-entropy method, 2020.

[12] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7
(1):1 — 26, 1979. doi: 10.1214/a0s/1176344552. URL https://doi.org/10.1214/a0s/
1176344552,

[13] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. CoRR, cs.MS/0102001, 2001. URL https://arxiv.org/abs/cs/0102001,


http://jmlr.org/papers/v16/garcia15a.html
http://jmlr.org/papers/v16/garcia15a.html
https://proceedings.mlr.press/v119/stooke20a.html
https://proceedings.mlr.press/v119/stooke20a.html
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://arxiv.org/abs/cs/0102001

	Introduction
	Related Work
	Methods/Algorithms
	Training Evaluation Metrics
	Testing Evaluation Metrics
	Stratified Bootstrap Confidence Interval
	Performance Profile

	Baseline Model-free Methods
	Model-based Method

	Experiments/Results/Discussion
	Training Evaluation
	Testing Evaluation
	Comprehensive Evaluation of Model-based and Model-free Method

	Conclusion
	Contributions

