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Abstract

Indoor localization and navigation are useful for users
to find their way in complex buildings. In this project, we
present an Hololens application to support indoor floorplan
localization and navigation. We design a frontend interface
that displays the floorplan minimap, showing the current lo-
cation, and navigating users to the user-defined destination.
There is a backend server that receives images to locate the
current pose and solves the navigation problem based on
the user-defined destination. The proposed approach has
been tested on the large-scale dataset of ETH buildings and
shows good performance.

1. Introduction
People always find themselves not only lost in big cities

but also sometimes lost inside buildings, including but not
limited to libraries, hospitals, shopping malls, etc. These
buildings can be extremely big and have complex layouts.
Therefore, there is a big need to develop an assistant system
for visitors to localize and navigate themselves in complex
buildings. A common way is to place some floorplans with
their current location at some critical point in the building.
However, this is usually not enough for continuous naviga-
tion as there are just too few of them. It is also very hard for
GPS-based mobile applications (like Google Maps) to work
in indoor scenes.

In order to provide a possible solution for the above-
mentioned problems of indoor navigation, we develop a
purely vision-based mixed-reality App to place minimaps,
trajectories, and navigation information on the Hololens2.
The HoloLens2 is known as a mixed-reality device that
blends digital worlds into the real world. With the
HoloLens2, we can bring applications and objects into the
world around users to understand and interact with the en-
vironment.

(a) Control Panel.

(b) Trajectory and navigation route.

(c) Choose navigation goal.

Figure 1. Screenshot of our application.

In this report, we present how we develop the App that
displays the trajectory on the floorplan minimap, and pro-
vides navigation capabilities with the HoloLens2. As shown
in Fig. 1, a floorplan minimap is displayed in the environ-
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Figure 2. System structure of floorplan localization and naviga-
tion.

ment and the past trajectory is automatically updated on the
minimap to help users localize themselves. Users can also
drag the floating diamond to select a navigation destination.
After a destination is chosen, the App will display a route
to the destination so that users can follow the path to the
desired location.

The system structure is shown in Fig. 2. We create an in-
terface in the Hololens2 to display the current location, past
trajectory, and navigation result on the floorplan minimap.
Additionally, the user can also choose their own navigation
destination. Considering the computation insufficiency of
the Hololens2, we choose to use a backend server to pro-
cess localization and navigation information. To be specific,
for the localization service, we combine the onboard SLAM
system with the backend server to ensure high precision and
real-time performance. The backend server receives images
from Hololens every second and localizes them using the vi-
sual localization method. This position information is used
to align the Hololens2 local trajectory to the floorplan and
correct the drift. For the navigation service, the backend
server receives the destination from the Hololens and works
as the basis to conduct a path planning algorithm and send
back the navigation path.

2. Related Work
Since Microsoft HoloLens first appeared in 2016,

HoloLens has been used in various industries, such as
the medical and healthcare, robotics, industrial engineer-
ing, etc. [9] Microsoft HoloLens2 is equipped with var-
ious sensors, including four tracking cameras and a ToF
range camera. The sensor images, poses, and intrinsics can
be accessed by the user under research mode [16]. More-
over, Hololens provides developers to explore the expand-
ing world of Mixed Reality applications with the Mixed
Reality Toolkit (MRTK), Windows Mixed Reality, Unity,
Unreal, and more for HoloLens and Windows Immersive
Headsets. [16] These properties make HoloLens potentially
interesting as an indoor mapping and localization device.

Several localization and navigation applications are devel-
oped in the past years [3, 6, 7, 18].

Localizing a user within the environment is important
not only for navigation systems but also in general for any
location-aware application. Unfortunately, GPS cannot be
used indoors because the satellite signal is usually unavail-
able when inside a building. A large body of work inves-
tigates alternative technologies for localizing users when
they are indoors. A widely used strategy is visual localiza-
tion, the method of estimating the position and orientation
from which an image was taken. It is a vital component
in many computer vision and robotics scenarios and bene-
fits long-term localization algorithms on generalization to
unseen scene conditions. Visual localization methods are
classified into structure-based methods [13, 14] and image-
based methods [15, 17]. The former performs direct match-
ing of local descriptors between 2D key points of a query
image and 3D points in a 3D SfM model. These methods
are able to estimate accurate poses, but often rely on exhaus-
tive matching and are thus compute-intensive. The image-
based methods are related to image retrieval and can only
provide an approximate pose up to the database discretiza-
tion, which is not sufficiently precise. Hierarchical local-
ization [4, 5, 11] takes advantage of the above approaches
by dividing the problem into a global, coarse search fol-
lowed by a fine pose estimation. Additionally, learned local
descriptors, such as SuperPoint [12], DELF [8], etc., have
been applied to improve robustness and accuracy.

3. Method

The system architecture is shown in Fig. 2. The whole
system is divided into frontend and backend parts. The fron-
tend runs on the Hololens, including the display module and
the frontend localization module. In the display module,
we develop an interface that allows users to select a des-
tination and displays the floorplan map and paths. When
the user chooses to display the map, the multi-threaded
asynchronous localization is automatically started. On one
thread, the local localization information is read from the
onboard SLAM to update the display position. On the other
thread, an image captured by the Hololens’ front RGB cam-
era is sent to the backend to do the global localization.
When the user selects a target point, the frontend sends the
position of the target point to the back end for processing.

The backend runs on the server, including the navigation
module and the backend image localization module. When
the navigation module receives the destination, it starts to
run the path-planning algorithm and returned the planed
path to the frontend. When the backend image localiza-
tion module receives an image, it starts to run the hloc [10]
algorithm to calculate the location and send it back to the
frontend.
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3.1. Hololens App Design

This part mainly describes the user interface design of
this APP.

When you start the APP, you will see a control pannel
with four buttons as in figure 1a.

The first button is in charge of controlling the localiza-
tion function. As soon as it is pressed, the localization starts.
At first, it needs some time to initialize. When the initializa-
tion stage finishes, the floorplan minimap will be displayed
at the bottom left corner of your view like in 1b. The trajec-
tory will be displayed on it and is updated in real-time. You
can press it again to hide the minimap, but the localization
will continue in the background.

The second button is in charge of the navigation function.
After initialization, if you press it, the floorplan minimap
fixed in the view will be hidden. Another horizontal map
with a destination choice indicator (the yellow diamond)
will appear in front of you and will be fixed in the real world
like in pic 1c. You can choose your destination by dragging
the indicator. The red dot will follow the movement of the
indicator, which represents the destination you pick on the
map. Press the second button again to send your destination
to the backend server. The floorplan minimap will show up
again to replace the horizontal bigger map. The navigation
path will be displayed on it after the result is returned.

The third button is in charge of debugging. When you
press it, a window showing the last image sent to the back-
end server for localization will be displayed at the bottom
right corner of your view as in figure 1b. You can also press
it again to hide the debugging window.

The forth button is exiting the APP.

3.2. Communication

Representational state transfer (REST) API design is a
standard guideline for creating stateless, reliable web APIs.
Although our application only requires a very simple inter-
face to use the computation power of the backend server, we
still follow the REST design rules for possible expansion in
the future. Now, the backend provides two interfaces, one
for localization and one for navigation.

The localization interface accepts a POST HTTP request
with multipart Form data, which includes a string contain-
ing the intrinsic of the camera and an image file. The server
decodes the string to get intrinsic, checks the format of the
received file, reads the image, and sends them for localiza-
tion. After execution, the localization result is sent back to
the front end in string.

The navigation interface also accepts a POST HTTP re-
quest, but only with JSON data indicating the starting and
target position for the navigation algorithm. The result is
also sent back to the front end in a string containing the tra-
jectory or an error message.

For the implementation detail, the back end is imple-
mented in Python in consistency with the localization sys-
tem, and the API is implemented with FastAPI framework
and a Uvicorn server. In the front end, the HTTP requests
are sent with HttpClient class in System.Net.Http C# li-
brary.

3.3. Asychronous Localization

The biggest challenge of the application is to achieve
real-time updating of the user’s location. Unlike navigation
applications in the outdoor environment, indoor navigation
requires a more precise location and therefore less updating
latency. But in our case, as the Hololens have very limited
computation power, the localization algorithm has to run on
a back-end server. And as indoor localization is based on
visual-based methods that have high computational com-
plexity, it naturally has big latency even without considering
the network communication.

Fortunately, Hololens provides an onboard SLAM algo-
rithm which is a basic component of Hololens and con-
stantly running in the background. From that, a local mo-
tion can be obtained in realtime. Based on this, we propose
an asynchronous localization method to integrate the local
positions from the onboard SLAM system and the global
positions from the backend server.

Asychronous Localization Pipeline is a multithreading
process on Hololens, as shown in Fig. 3. In our system,
the frontend part has a global localization thread and a local
localization thread.

There are two steps in the global localization thread to
locate an image on the floor plan. The first step is to lo-
calize the image in a prebuilt 3D map of the building, in
which we calculate the transformation matrix TWC from
the camera coordinate to the world (3D map) coordinate.
The second step is aligning the 3D map with the floorplan
through the transformation matrix TFW from the world co-
ordinate to the floorplan coordinate. The final output of
the global localization thread is the transformation matrix
TFC = TFW ∗ TWC from the camera coordinate to the
floorplan coordinate.

In the local localization thread, it continuously records
the pose of the Hololens in the Hololens’ local coordinate.
The poses are represented in the form of the transformation
matrix T (i)

HC , i = 0, 1, . . . from the camera coordinate to the
Hololens’ local coordinate. This recording process works
in real-time.

At the very beginning of the localization t0, the global
localization thread starts the initialization by taking a pic-
ture and sending it to the backend. It waits until TFC is
returned at time t1. While waiting for the return, the lo-
cal localization thread keeps recording all the local poses
T (0)
HC , T

(1)
HC , . . . , T

(n1)
HC . After TFC is known, we can cal-

culate the transformation matrix TFH from the Hololens
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Figure 3. Asynchronous localization.

coordinate to the floorplan coordinate by TFH = TFC ∗
(T 0

HC)
−1. It is then applied to all local poses to draw them

on the floorplan via T (i)
FC = TFH ∗ T (i)

HC , i = 1, . . . , n1.
At the time t1, a new picture is taken and sent to the

backend. The old transformation TFH is applied to the new
poses T (i)

HC , i = n1 + 1, . . . , n2 recorded by the local lo-
calization thread to draw them on the floorplan minimap.
At time t2 when the new TFC is returned, TFH is then up-
dated. In the meanwhile, all the poses between time t1 and
t2, T (i)

HC , i = n1 + 1, . . . , n2, are adjusted according to the
new transformation TFH .

In this way, we can update the trajectory in real-time
using local localization. The error will not accumulate
through time because of the initialization error and the drift
from the local trajectory by updating the transformation ma-
trix. The frequency of global localization can be adjusted to
exploit the backend computation power, and here we sim-
ply start a now global localization task when the last task
finishes.

There is also a rejection mechanism to reject wrong lo-
calization results from the backend. As the Z axis of the
Hololens, the 3D map, and the floorplan are aligned, the
TFH is indeed a SE(2) transformation. So we check the
position difference and the rotation difference between the
old and new TFH . The threshold is currently set to 3 meters
and 10◦.

Asychronous Implementation To implement the asyn-
chronous pipeline, we choose to use the job system of Unity
which can create, manage, and execute jobs. One chal-
lenge in implementing the pipeline is the job system limits
the job can only access blittable data which doesn’t need
conversion when passed between managed and native code,
which means no reference, no string, and even no char can
be passed, and stored in the job or passed back from the
job. Fortunately, the problem is solvable in our case, what
we need to send is an image that can be converted to a byte
array, a URL consisting of IP which can be sent as several
integers, and intrinsic values which can be sent as several
float values.

In the pipeline, a job and only one job need to be sched-

uled as initialization, this is realized by checking an ini-
tialization flag. Possible failure of the initialization also
needs to be considered and a new initialization needs to be
done. After initialization, the program will check whether
the scheduled job is finished by checking the flag of the job
handle provided by the system. If the job is finished, the
result will be read and processed, and a new job will be
scheduled.

Local Localization leverages the results of Hololens
built-in SLAM algorithms to obtain the motion of the de-
vice. There is an onboard SLAM algorithm running in the
background of Hololens2 system using the four gray-scale
cameras on it. The pose of the coordinate is the pose when
you start the APP, except that the Y axis is aligned with
the gravity direction. The pose of the Hololens2 can be ob-
tained in real time so that we can track the trajectory con-
tinuously.

Global Localization includes the image localization
part and the floorplan alignment part.

The image localization part uses the visual localization
method on the backend server to produce accurate and ro-
bust localization results of the image. Here We applied the
hierarchical localization toolbox (hloc) [10] for global loca-
tion. Hloc is a learning-based modular toolbox for state-of-
the-art 6-DoF visual localization which leverages both im-
age retrieval and feature matching based on SuperGlue [12].

We first use hloc [10] to build a reference 3D SFM model
from the mapping dataset before the whole algorithm starts.
The mapping process first extracts Superpoints [12] features
of all images and finds covisible database images with im-
age retrieval, then matches these database pairs with Super-
Glue and triangulates a new SFM model with COLMAP.
We use the ETH-Microsoft Localization Dataset [2] as the
mapping dataset, which includes images captured at the HG
building of the ETH Zurich campus by the 6-camera rig of
a NavVis M6 mobile scanner.

During the localization stage, hloc [10] finds database
images relevant to each query image by the retrieval and
match the key points with SuperGlue. Afterward, the pose
can be derived through the localization algorithm.

The floorplan alignment computes the transformation
TFW from the world coordinate to the floorplan coordinate.
We make use of the coarse-to-fine registration pipeline pro-
posed in Aligning Lidar Scans with 2D Maps (Our project
in the 3D Vision course 2022), where we extract structural
features from point clouds using attributes such as density,
normal, etc. In coarse registration part, we used an exhaus-
tive search method through SE(2) space to find the trans-
formation with the highest cross-correlation score. In fine-
registration part, we build a cost function based on facade
distance to achieve a more precise alignment using ceres
solver. This approach has been tested on the large-scale
dataset of several ETH buildings and shows high accuracy
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in each case. This process is an offline process that is com-
puted in advance.

3.4. Navigation

Path Planning is one of the most crucial research prob-
lems in robotics from the perspective of the control engi-
neer. Many problems in various fields are solved by propos-
ing path planning. It has been applied in guiding the robot
to reach a particular objective from very simple trajectory
planning to the selection of a suitable sequence of action.
Path planning cannot always be designed in advance as the
global environment information is not always available a
priori. By proposing a proper algorithm, path planning can
be widely applied in partially and unknown structured envi-
ronments.

In our implementation, we choose the Rapidly-exploring
random tree (RRT) as the path-planning algorithm. RRT
is an algorithm designed to efficiently search nonconvex,
high-dimensional spaces by randomly building a space-
filling tree. The high efficiency of the RRT algorithm makes
it an ideal choice for our navigation module.

A map of that place is required to allow the RRT algo-
rithm to work in a specific place. We demonstrate the nav-
igation function in ETH HG with a floor plan of layer E.
The floor plan is an RGB image with a size of 1659x1167.
Since the RRT algorithm requires an obstacle list with the
radius information included, we preprocess the floor plan to
perform RRT on it. We first binarized the RGB map with a
threshold. Then the binary map is further downsampled to
improve computational efficiency. Finally, the points in the
binary map with a value of 1 are abstracted to an obstacle
list with a predefined radius.

In the navigation module, two positions indicating the
start point and the goal are set by the user. Then the RRT
algorithm is performed to output a feasible path that can
navigate the user to the destination.

4. Experiment

We present the performance of our App in the ETH-HG
building. In the remainder of this section, we first introduce
our experiment setting. Then we visualize the results of our
experiments. Finally, we show some detailed intermediate
results and failure cases and give some analysis of the per-
formance.

4.1. Experiment Settings

Localization Settings For visual localization, we first
crop the image to the vertical horizon. We use Netvlad [1]
for image retrieval and use Superpoint [12] as local features.
We set the pairs of retrieval to be 10, which means that the
top ten matched images will be selected and used to extract
Superpoints. We set the PnP projection threshold to 40.

(a) Experiment 1. Normal localization and navigation result

(b) Experiment 2. Large-scale localization test

Figure 4. Screenshots of experiments results. Trajectories are
shown in blue dots. The navigation pathes are shown in green
dots.

For local localization, we collect location data every sec-
ond from the Hololens’ onboard SLAM trajectory.

Navigation Settings In the implementation, we treat all
the black pixels in the floor map as obstacles with a radius
of 1m. The radius of the agent is also assumed to be 1m. To
reduce the computational complexity, we 4× downsampled
the floor map before feeding it to the RRT algorithm.

4.2. Experiment Results

Fig. 4 shows two experiment results of the localization
and navigation. In 4a, the trajectory on the floorplan min-
imap perfectly matches the real trajectory. The navigation
function also successfully gives out the navigation path to
the picked destination. When we return to the starting point,
the trajectory also coincides with the origin.

We also tested the large-scale localization, and the APP
also gives out a very reliable result as shown in figure 4b.

Details can be checked in the video.

4.3. Evaluation

Asychronous localization Figgure 6 shows the effect of
asynchronous localization. In fig. 6a we can see some se-
vere errors and drift. The pure local trajectory should be

5

https://youtu.be/5qkLDyfT1ss


(a) Success case 1. (b) Success case 2.

Figure 5. Success matching cases.

continuous. But in the red circles, we can see that the APP
corrects all the trajectories after some timestamp by mov-
ing the trajectory away using the new correct transforma-
tion matrix, thus causing the gap. At the end (the upper red
circle) it successfully corrects the trajectory and makes all
the trajectories afterward more accurate.

Fig. 6b shows how the onboard SLAM compensates
for the calculation speed of visual localization. Limited by
GPU device, hloc algorithm requires about 60 seconds to
process one image. In Fig. 6b, the right floating images
are the images sent to the backend, which shows a large de-
lay from the current location. As displayed on the floorplan
(the left images) in Fig. 6b, the SLAM system update the
location and compensates for the time delay.

Visual Localization Fig. 5 shows hloc’s successful
matching results, which include enough key points for lo-
calization and correct pose in 3D point clouds and 2D maps.
However, hloc sometimes fails due to motion blur, wrong
matching, and lack of features. As demonstrated in Fig. 7a
and Fig. 7b, motion blur and lack of features will directly
lead to the failure of hloc. While the wrong matching is
mainly caused by the challenging environment which con-
tains many self-similarities and symmetric structures, as
shown in Fig. 7c.

5. Conclusion

In this project, we developed an APP for indoor local-
ization and navigation on Hololens, based on the computer-
vision method. It provides a reliable solution to solve the
problem of localization in indoor scenes without GPS sig-
nals. At the same time, it is very easy by rendering all the
items in the real-world using mixed reality.

In the future, there is still some work we can do to im-
prove the experience of this APP, e.g

• Improve the global localization inference speed by us-
ing the local localization information as priors.

• Show the navigation information in a mixed reality
way.

(a) Trajectory correction. The global localization results are used to
correct the error from local drift and the last localization result

(b) Real-time Update. The trajectory is updated even the global local-
ization result is not returned (no new image is taken).

Figure 6. Asynchronous Localization.
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